City of Pinole

Pinole/Hercules WPCP Project

Technical Memorandum 15

Hydraulic Profile

Prepared under the responsible charge of
Craig Olson 39819

2365 Iron Point Road, Suite 300
Folsom, CA 95630

Contents

Executive Summary 1
Purpose 1
Background 1
Conclusions 1
Introduction 2
Design Criteria 2
Design Flows 2
Process Units in Service 2
Hydraulic Analysis 6
ADWF Scenario 6
MMF and MDF Scenarios 8
PWWF Scenario 8
Recommended Project 8
Appendix A. Pinole/Hercules WPCP Hydraulic Element List. 10
Appendix B. Pinole/Hercules WPCP VH Output 11
Figures
Figure 15-1. ADWF/MMF/MDF Flow Path 4
Figure 15-2. PWWF - Flow Path 5
Figure 15-3. Hydraulic Profile 7
Tables
Table 15-1. Design Flow Scenarios 2
Table 15-2. Number of Units in Service 3
Table 15-3. Flow Modeled Through Each Unit Process 3
Table 15-4. Unit Process Design Constraints 9

TM 15 - Hydraulic Profile

Pinole/Hercules WPCP Project
March 1, 2012
Reviewed by: Craig Olson, P.E., Mallika Ramanathan, P.E.
Prepared by: Rob Natoli, P.E.

Executive Summary

Purpose

The purpose of this technical memorandum (TM) is to prepare a detailed hydraulic profile analysis for the proposed process upgrades at the Pinole/Hercules Water Pollution Control Plant (WPCP). Additionally this TM will outline proposed modifications to address hydraulic issues.

Background

The WPCP was issued a renewed National Pollution Discharge Elimination System (NPDES) permit in August 2012, which contains new treatment and discharge requirements that become effective in 2017. Upgrades to the Headworks, secondary treatment and disinfection system are needed to meet renewed permit requirements. These upgrades will change the hydraulic capacity of the WPCP. This TM presents the hydraulic analysis of flow conditions developed in TM 1 and treatment scenarios developed in TM 8.

Conclusions

HDR reviewed four hydraulic scenarios:

- Average Dry Weather Flow (ADWF)
\diamond Maximum Month Flow (MMF)
\diamond Maximum Day Flow (MDF)
\diamond Peak Wet Weather Flow (PWWF)
The existing primary clarifiers and Secondary Clarifier Distribution Box do not have capacity to handle wet weather flows. To mitigate hydraulic issues, flows greater than 12 million gallons per day (mgd) will bypass the primary clarifiers and discharge to the Primary Effluent Junction Box. A new Secondary Clarifier Distribution Box will be constructed to split flow between five secondary clarifiers. Weirs at both primary and secondary clarifiers will be reinstalled to confirm they are at the required elevation. Following construction of the upgrades the secondary system will be able to treat up to 20-
mgd. The costs for the hydraulic improvements discussed in this TM are included in the design costs for the upgrades treatment process they are most closely related to.

Introduction

Hydraulic analyses were performed to model proposed upgrades to the WPCP to determine if the proposed plant modifications will significantly alter the hydraulic profile of the plant. The NPDES permit requires that all influent flows receive secondary treatment prior to disinfection and discharge to the San Pablo Bay. Currently, the secondary treatment system does not have the hydraulic capacity to treat flows above approximately 11 mgd .

HDR used Visual Hydraulics, a commercial software program, to analyze the future hydraulic profiles. This model was developed using existing plant information and proposed dimensions and elevations for new plant processes. The following sections contain the design criteria used for the hydraulic analysis, a description of the hydraulic analysis and flow scenarios, hydraulic profile figures and a summary of the hydraulic modeling results.

Design Criteria

The following sections provide the design criteria that are used in the development of the WPCP hydraulic profile for the WPCP upgrades project.

Design Flows

The basis of hydraulic design flows were developed in TM 1. Flow scenarios include the ADWF, MMF, MDF, and PWWF. Table 15-1 presents the flow components for each design scenario. A description of each flow component can be found in TM 1.

Table 15-1. Design Flow Scenarios

| Flow Component | ADWF
 (mgd) | MMF
 (mgd) | MDF
 (mgd) | PWWF
 (mgd) | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined Influent Flow | 4.06 | 6.09 | 11.3 | 20 | |
| | Comment | | | | |
| Return Activated Sludge (RAS) | 3.25 | 4.87 | 5.65 | 10.00 | 80% of Influent, 50% during storm events |
| Mixed Liquor Recycle (MLR) | 8.12 | 12.18 | 22.6 | 0 | 200% of Influent, no recycle during PWWF |
| Disinfected Effluent Flow | 4.06 | 6.09 | 11.3 | 20 | |

Process Units in Service

The number of process units in service varies with the flow scenario. During ADWF at least one process unit from each treatment process was modeled as offline to ensure that a unit can be out of service for maintenance and cleaning. Table 15-2 provides a list of the major unit processes modeled and the number of units in service under each flow scenario.

Table 15-2. Number of Units in Service

| Unit Process | ADWF | MMF | MDF | PWWF | Comment |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| Primary Clarifier Distribution Box | 1 | 1 | 1 | 1 | When influent exceeds 12-mgd, remaining
 flow is by-passed around the primary
 clarifiers |
| Primary Clarifiers | 2 | 3 | 3 | 3 | Hydraulic capacity of 12-mgd |
| Primary Effluent Junction Box | 1 | 1 | 1 | 1 | |
| Aeration Basins | 1 | 2 | 2 | 2 | Contact stabilization is utilized during storm
 events |
| Secondary Clarifier Distribution Box | 1 | 1 | 1 | 1 | |
| Secondary Clarifiers | 4 | 5 | 5 | 5 | Per new NPDES Permit all flow must receive
 secondary treatment |
| Chlorine Contact Basins | 1 | 2 | 2 | 2 | |

Each flow scenario routes specific volumes of flow through each unit process. During ADWF, MMF, and MDF the biological treatment system will operate in a Modified Ludzack-Ettinger (MLE) configuration, with internal mixed liquor recycle. During storm events (prior to and during PWWF), the biological treatment system will operate in contact stabilization mode. This is necessary to stabilize the treatment process during high flow. Table 15-3 provides a list of flows modeled through each unit process for each of the flow scenarios.

Table 15-3. Flow Modeled Through Each Unit Process

| Unit Process | ADWF | MMF | MDF | PWWF | |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| Primary Clarifier Distribution Box | 4.06 | 6.09 | 11.3 | 12 | Comment |
| Primary Clarifier No. 2 | 1.35 | 2.03 | 3.77 | 4.00 | By-pass of Primary Clarifiers occurs when
 flows surpass 12-mgd |
| Primary Effluent Junction Box | 7.31 | 10.96 | 16.95 | 20.00 | RAS returned to AB Zone A During Storm
 Events |
| Aeration Basin 3/4 | 15.43 | 11.57 | 19.78 | 30.00 | Contact Stabilization Mode |
| Secondary Clarifier Distribution Box | 7.31 | 10.96 | 16.95 | 30.00 | Distribution box weirs are fully submerged at
 all flow conditions. |
| Secondary Clarifier No. 2 | 2.41 | 3.62 | 5.59 | 9.90 | |
| Chlorine Contact Basin No. 1 | 2.03 | 3.05 | 5.65 | 10.00 | |

The hydraulic profile calculations were completed using the longest hydraulic path to achieve conservative results. The ADWF, MMF, and MDF patterns are outlined in Figure 15-1. The following unit processes were used: Chlorine Contact Basin No. 1, Secondary Clarifier No. 2, Aeration Basin 3/4, and Primary Clarifier No. 2. The PWWF pattern is outlined in Figure 15-2.

Figure 15-1

Figure 15-2

The starting water surface elevation for each flow scenario is calculated as the headloss over the effluent weir in Chlorine Contact Basin. The 2002 Secondary Clarifier Expansion record drawings indicate that the weir elevation is set at 107.15 ft . The final upstream elevation is set at the Primary Clarifier Distribution Box. Weir elevations in this box are manually set with stop logs. For the purpose of this analysis the weir Primary Clarifier Distribution Box weir elevation was assumed to be 117.00 ft .

Hydraulic Analysis

Four flow patterns were analyzed for this TM, ADWF scenario, MMF scenario, MDF scenario, and the PWWF scenario. All reference elevations for the models are based on the 1929 Datum per the 1971 WPCF drawings. (Yoder - Trotter - Orlob \& Associates). A hydraulic profile of the proposed plant upgrades is provided in Figure 15-3. A detailed hydraulic element list for each flow scenario is provided in Appendix A. Descriptions of each flow pattern are presented in the following paragraphs.

ADWF Scenario

Figure 15-1 illustrates the flow path for this flow scenario. Raw sewage from the Headworks is pumped to Primary Clarifier Distribution Box where it flows over one of three weirs to each of the Primary Clarifiers. Flow from the primary clarifiers is combined in the Primary Effluent Junction Box, where it is mixed with Return Activated Sludge (RAS) pumped from the secondary clarifiers.

Primary effluent and RAS flow by gravity through a 42-in diameter reinforced concrete pipe to the aeration basins. During ADWF, all flow will be routed to a single aeration basin train. Flow enters the aeration basins through a 36-in downward opening sluice gate. The basins operate in a wrap-around configuration with an internal MLR. Mixed liquor exits the center aeration basins through a 36 -in gate and is conveyed by gravity to the Secondary Clarifier Distribution Box through a 30 -in diameter concrete pipe.

Mixed liquor is split in the Secondary Clarifier Distribution Box by a series of weirs dedicated to each of the five secondary clarifiers. The new distribution box will consist of five weirs. Two of the five weirs are 7 - ft long to feed new Secondary Clarifiers No. 1 and No. 2; the remaining three weirs are $2.5-\mathrm{ft}$ long to feed existing Secondary Clarifiers No. 3, No. 4, and No. 5. This allows more flow to enter the larger 65 -ft diameter clarifiers.

Flow feeding Secondary Clarifier No. 2 cascades over the weir and enters a drop box that feeds a 36 -IN pipe. The pipe enters the clarifier through the center well, and exits through a peripheral v-notch weir. The effluent launders feed a drop box and 36-IN effluent pipe.

Secondary effluent combined from all clarifiers enters a 42-in common header and is conveyed to the Chlorine Contact Basin for disinfection. Following disinfection, treated effluent passes over an effluent weir and into a 36-in effluent pipe to the Outfall Junction Structure. From the Outfall Junction Structure flows are diverted to the Effluent Pump Station or to the Emergency Outfall.

MMF and MDF Scenarios

The MMF and MDF scenarios are operated in a similar fashion the ADWF scenario; however, two aeration basins are online, as well as all primary and Secondary Clarifiers and both Chlorine Contact Basins. In the MDF scenario the RAS recycle is reduced to 50 percent of the influent flow as listed in Table 15-1.

PWWF Scenario

Figure 15-2 illustrates the flow path for the PWWF scenario. At PWWF the influent flow exceeds the hydraulic capacity of the primary clarifiers. Approximately 12 mgd will pass through the primary clarifiers and the remaining 8 mgd will flow from the Headworks directly to the Primary Effluent Junction Box. The biological treatment process will change to operate in contact stabilization mode.

In contact stabilization mode, RAS will be pumped directly to the aeration basins rather than to the Primary Effluent Junction Box. RAS will enter Aeration Basin Zone 1 through the existing 36-in downward opening sluice gate. Primary Effluent will flow through the 42-in diameter pipe, and enter the mixed liquor channel for Aeration Basin 3. Metal stop gates will be reconfigured so flow is conveyed down the existing step feed channel between Aeration Basins 1 and 2 and Aeration Basins 3 and 4. Flow will exit the step feed ports into Zones D and E. Aeration Basin zones are described in more detail TM 8. At PWWF the MLR pumps will be turned off and no internal recycle will occur.

Flow exits the aeration basins through the 36-in sluice gate and enters the Secondary Clarifier Distribution Box. To provide adequate flow split at PWWF, the weirs in the distribution box will be set at $110.00-\mathrm{ft}$. This analysis assumes the existing secondary clarifier weirs will be reinstalled, and the invert elevation raised 1.5 -in to $109.3-\mathrm{ft}$. Flow follows the same path as described in the ADWF scenario for the remainder of the treatment process.

Recommended Project

Output from the Visual Hydraulics model is presented in Appendix B. The construction of a new Secondary Clarifier Distribution Box and two new Secondary Clarifiers will allow the WPCP to operate at all flow scenarios with no hydraulic issues. At least 1-ft of clearance between the water surface elevation and the top of the concrete is provided for each process unit at all flow conditions. The invert of the primary clarifier weirs is adequate; however, HDR recommends that the elevation be field verified as part of the construction project. Table 15-4 provides a list of design considerations for each hydraulic unit process.

Table 15-4. Unit Process Design Constraints

Unit Process		Comment	
Primary Clarifier Distribution Box	-	No modifications necessary	
Primary Clarifiers	-	Weir elevations field verified and reset if needed	
Primary Effluent Junction Box	-	By-pass flows at 12 mgd	

There are no costs included in this TM for the recommended improvements. The costs for the discussed improvements are included in the TMs for the associated treatment process.

Appendix A. Pinole/Hercules WPCP Hydraulic Element List

*All elevations on the 1929 Datum per 1971 WPCF DrawingsDrawing Sets Used to Develop Hydraulic Elements List		
YEAR	drawing set	Abbr.
$\underset{1002}{2002}$	BrC Secondary Clarifier \# 5 Expansion	2002 SC
1983	MEE Plant Expansion	1983 Exp.
1971	Yoder - Troter - Orlob \& Associates WPCF	1971 WPCF

Condition		FLOW (MCD)		
		INFLUENT		MLR
2010	${ }^{\text {Peaeage }}$ Peak Wet Weather	${ }^{4.05}$	${ }_{\substack{3.85 \\ 5.00}}$	
2030	Average Dry weather	4.06	3.25 187	${ }^{8.12}$
	Maximum Mont	${ }_{10}^{6.30}$	${ }_{10}^{4.74}$	${ }_{12.56}^{12.56}$
	Peak Wet Weather	20.00	10.00	5.50

HYDRAULIC ELEMENTS LIST - MD

FACLITY	dwe. no.	COMPONENT	Elevations*			dimensions					Losses	FLOW						Commentsioperation
			wSE (fi)	$\begin{aligned} & \hline \text { Top I } \\ & \text { ROOF } \\ & \text { (if) } \end{aligned}$	INVERT (ti)	LENGTH	diameter	WIDTH	$\begin{gathered} \text { SLOPE } \\ \text { (ufifit } \end{gathered}$	DEPTH		Max Day Flow						
												FORWARD FLOW	$\begin{array}{\|l\|} \hline \text { PERCENT } \\ (\%) \end{array}$	$\begin{aligned} & \text { Ras } \\ & \text { RLow } \end{aligned}$	$\begin{gathered} \text { PERCENT } \\ (\%) \end{gathered}$	$\begin{gathered} \text { MLS } \\ \text { FLow } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { PERCENTT } \\ (\%) \\ \hline(0) \\ \hline \end{array}$	
	${ }^{2002} 2$ SC G-4	Ettuent Weir			107.15 103.25	$\stackrel{4.50}{140.0 t t}$		4.0.tt				5.65 5.65	50\% 50\%					
	1971 WPCF M-5	${ }^{\text {Easin }}$ Slide Gate		110.50	103.25 103.25			24.0in		36.0 in	6-90 deg Bends	${ }_{5.65}^{5.65}$	${ }^{50 \%}$					
	1971 WPCF M-5.5	Influent Box			${ }_{103.25}$	8.0 tt		24.0tt				${ }^{5} 11.3$	100\%					
	Figure C	42 - IN SCE				116.0tt	42.0 in				Wye - Branch to line 3-90 deg bend Exit	11.3	100\%					
	Figure C	SC \#1 Effluent Connection					36.0 in				Wye 24" to 42"							
	Notyet	SC \# 1 36" Effluent Pipe				70 tt	36.0 in				Entrance 2-90 deg	3.39	30\%		30\%			30% to each new SC $(1,2)$,14% to each old SC $(3,4,5)$ Assumptions made for design of a 65' \varnothing centra feed / peripheral take off clarifier, with v notch weir. 90deg V-Notches, spaced 4.5 o.C. $=594.63$ diameter No drawings produced yet
		SC \# 1 Eflluent Box			90	4t		4 th				3.39	30\%					
		SC \#1 Effluent Launder			107	100 tt		1.0tt	0.004			3.39	30\%					
	Weir Elv.	sc \# 1Effluent Weir			109.3							1.70	15\%		15\%			
		sc \#1		112.00	${ }^{90.00}$		65.0tt		0.00522222	22.5 t - 22.03 tt		3.39	30\%		30\%			
		SC \# 1 Inlet Ports		109.8 t	106.00 tt			0.5 tt		2.5 t	6 Inlet ports	3.39	30\%	2.71	30\%			
		SC \#1 Influent Line		--		200 t	36.0 in				$3-45$ bends	3.39	30\%	2.71	30\%			
												3.39	30\%	$\stackrel{2.71}{ }$	30\%			
	See TM	SC \#2 Influent Box		113.50	100.00	3.0 tt		7.5		13.5 t	High headloss over short weir	3.39	30\%	2.71	30\%			New spilter box required,
	See TM	Submerged Weir SC 5 Dist. Box Weir			110.00	7.0 t						3.39	30\%	2.71	30\%			
	See tm	SC Distribution Box		113.50	100.00	9.0 tt		30.0 tt		13.50 ft		11.30	100\%	9.04	100\%			
	yet produc	No. 3 36-IN Effluent				5.0 t	${ }^{36.0}$ in				exit $2-11.25$ deg bends entrance	5.65	50\%	4.52	50\%			
	Not yet producee	AB No. 3 36-1N Gate			105.50		36.0 in					5.65	50\%	4.52	50\%			
	${ }^{1983 \text { Exp. S. } 4}$	${ }_{\text {AB }}^{\text {AB } 3 \text { ML DL Drop Box }}$		113.5 t	${ }_{1}^{105.54 t} 1$	${ }_{\substack{3.50 \\ 5.5 t}}$				5.5 tt 4.3 t		5.65 5.65	50\%	${ }_{4.52}^{4.52}$	50\%			
	1983 Exp. M. 7	${ }_{\text {AB No. }}$ A-Effluent Slulice Gate											50\%	${ }_{4.52}^{4.52}$	50\%			High headoss
	Figure 10	AB No. 3 Zone E			${ }_{96.5 \text { tt }}$	95.0tt		20.0 tt		17.0tt		5.65	50\%	${ }_{4}^{4.52}$	50\%	11.3	50\%	190° is total length of Abs.
	Figure 10	Battle Zone E to D			109.0tt			20.0 tt				5.65	50\%	4.52	50\%	11.3	50\%	
	Figure 10	AB No. 3 Zone D			96.5 t	95.0 tt		20.0 t		17.0tt		5.65	50\%	4.52	50\%	11.3	50\%	During MM flow conditions, 100% of influent is sent to Aeration Basins, 90% is RAS, and 145% is MLR
	Figure 10	Batfle Zone D to C			109.0 ft	--		20.04		--		5.65	50\%	4.52	50\%	11.3	50\%	
	Figure 10	AB No. 4 Zone C			96.5 tt	130.0tt		20.04		17.0tt		5.55	50\%	4.52	50\%	11.3	50\%	
	Figure 10	Batfle Zone C to B			109.0tt	--		20.04		--		5.65	50\%	4.52	50\%	11.3	50\%	
	Figure 10	AB No 4. Zone B			96.5 t	30.0t		20.0 in		17.0 in		5.65	50\%	4.52	50\%	11.3	50\%	
		Baffle Zone B to A AB 4 Zone A				30.0t		20.0 tt 20.0 tt		17.0tt		5.65 5.55 5.5	50\%\%	4.52 4.52	50\%\%	${ }_{111.3}^{11.3}$	50\%	
	1983 Exp. M. 7	AB No. 4- Influent Sluice Gate			110.00 ft	3.0n		36.0 in		30.0 in	3 gates	5.65	50\%	4.52	50\%			3 gates modeled @ inv
										30.0in								110.004
	$1{ }^{1983 \mathrm{Exp} . \mathrm{S}-4} 1$	AB No. 4 Influent Channel AB No. 4 Sloped Channel			${ }_{1}^{109.25 \mathrm{ta}} 1$	${ }_{\substack{4.3 \text { ft } \\ 5.3 t}}$		${ }_{\substack{3.00 t t \\ 3.0 t}}$	0.141 tt	4.0 tt		5.65 5.65 5	50\%\%	4.52 4.52	50\%\%			
	1983 Exp S-5	AB No. 314 Spliterer BoxChannel			110.0 tr	${ }_{\text {12, }}$		${ }^{3.51 t}$	0.141π	3.0t	290-deg bends	5.65	50\%	4.52	50\%			High headloss
	1983 Exp.	42-IN RCP Influent Pipe AB No. $3 / 4$				58.0 tt	42.0 in				${ }_{2}^{\text {Exit }}$ 2-90 deg bends	5.65	50\%	4.52	50\%			
	1983 Exp.	42-IN RCP Tee Line to Branch					42.0 in				Tee	5.65	50\%	4.52	50\%			
	1971 EXP M 30.4	42-IN RCP PC Effluent Pipe to Junction Box				224 tt	45.0 in				$\begin{aligned} & \text { 2-90deg bends } \\ & \text { entrance } \end{aligned}$	11.30	100\%	9.04	100\%			
	1971 EXP M 30.2	PE Junction Box		114.5tt	104.5tt	16.5 t		7.0 tt		10.0t		11.30	100\%	9.04	100\%			
	1983- - 2	PC \# 224 -IN RCP Effluent				120					4.45 deg bends	${ }^{3.73}$	33\%					V-notch weir 4" Spacing 90 deg angle, 212 notches Invert = 114.25
	1971 WPCF M 30	PC \# 2 Eftluent Box		116.00	112.00	4		1.5 tt				3.73	33\%					
	1971 WPCF 30	PC \# 2 Effluent Trough/Launder			112.00	78		1.0ft	-0.0094			1.86	17\%					
	2002 SC G4	PC \# 2 Effluent Weir			${ }^{114.25}$	135						${ }^{3.73}$	33\%					
	1971 WPCF M 38	PC\#2 2asin			106.00		45.0 18.0 18					3.73 3.73 3	33\% ${ }^{33 \%}$					
	1971 WPCF M 38	PC \# 2 Infuent well				${ }^{7} 18 \mathrm{t}$	${ }_{\text {cher }}^{\text {24.0in }}$				90 bend Bend	3.73 3.73	33\%					
	1971 WPCF 30	$36-\mathrm{l}$ Influent pipe				32 tt	36.0 in				90 Bend	${ }^{3.73}$	33\%					
	1971 WPCF M 30	Drop Box to Primary Clarifier No. 2			108.00	40.0 in		40.0 in				${ }^{3.73}$	33\%					
	1971 WPCF 3 3	Primary Clarifier Distribution Box Weir		120.00	117.00	4.0 t						${ }^{3.73}$	33\%					Flow is pumped to this location.

YEAR	drawing set	bbr.
2002	BxC Secondary Clarifier \#5 Expansion	
1983	M2E Plant Expansion	1983 Exp.
1971	Yoder - Troter - Oriob \& Associates WPCF	1971 WPCF

CONDITION		FLOW (MGD)		
		INFLUENT	RAS	MLR
2010	\|lale ${ }^{\text {Average }}$ Peak Wet Weather	4.05 10.00	3.85 5.00	
	Maximum Month	6.09	4.87	${ }^{12.18}$
2030	Maximum Day	11.30	${ }^{9.04}$	22.6

year	drawing set	Abbr.
	BRC Secondary Clarifier \#5 Expansion	
1983	MeE Plant Expansion	1983 Exp.
1971	Yoder - Troter - Orrob \& Associates WPCF	1971 WPCF

Condition		FLOW (MCD)		
		INFLUENT	ras	MLR
2010	Average Peak Wet Weather	${ }_{10.00}^{4.05}$	3.85 5.00	5.8725
203	Maximum Month	6.09 103 10	5.79	8.8305 1835
2030	Meaximum Day	${ }_{20.00}^{11.30}$	10.00	0.00

Appendix B. Pinole/Hercules WPCP VH Output

Pinole ADWF Flow.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
4.06 mgd	3.25 mgd	8.12 mgd	-----

Section Description
Water Surface Elevation
Starting water surface elevation 107

Effluent Weir

Weir invert (top of weir) $=107.15$
Weir length $=4.5 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=4.06 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.56 \mathrm{ft}$
Chlorine Contact Basin
107.72

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=140 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=2.03$ mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=17.84 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.381$
Normal depth = infinite
Critical depth $=0.27 \mathrm{ft}$
Depth downstream $=4.46 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.47 \mathrm{ft}$
Velocity $=0.18 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Slide Gate
107.73

Opening type = rectangular gate
Opening diameter/width $=24$ in
Gate height $=36$ in
Invert $=103.25$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.03 \mathrm{mgd}$

Total area of opening(s) $=6 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=0.52 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.01 \mathrm{ft}$
Downstream water level = 107.72
Upstream water level $=107.73$

CC Basin Influent Box

107.73

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=8 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=4.06$ mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=17.91 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.382$
Normal depth = infinite
Critical depth $=0.43 \mathrm{ft}$
Depth downstream $=4.48 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.48 \mathrm{ft}$
Velocity $=0.35 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
42-IN SC Effluent
107.75

Pipe shape $=$ Circular
Diameter $=42$ in
Length $=116 \mathrm{ft}$
Flow $=4.06 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor = 120
Total fitting K value $=1.75$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.01 \mathrm{ft}$
Total loss $=0.02 \mathrm{ft}$
SC \#2 Effluent Connection
107.75

Tee type = branch to line
Diameter of pipe line $=42$ in
Diameter of pipe branch $=30$ in

Flow through tee $=1.22 \mathrm{mgd}$
Velocity through tee $=0.38 \mathrm{ft} / \mathrm{s}$
Total tee K value $=1.69$
Overall head loss $=0 \mathrm{ft}$
SC \#2-30-IN Effluent
107.76

Pipe shape $=$ Circular
Diameter $=30$ in
Length $=70 \mathrm{ft}$
Flow $=1.22$ mgd
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1$
Pipe area $=4.91 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor = 1
Velocity $=0.38 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0 \mathrm{ft}$
Total loss $=0 \mathrm{ft}$

SC \#2 Effuent Box

107.76

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=4 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=1.22 \mathrm{mgd}$
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=71.04 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.798$
Normal depth = infinite
Critical depth $=0.19 \mathrm{ft}$
Depth downstream $=17.76 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=17.76 \mathrm{ft}$
Velocity $=0.03 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
SC \#2 Effluent Launder
Launder invert = 107
Launder length $=100 \mathrm{ft}$
Launder width $=1 \mathrm{ft}$
Launder slope $=0.004 \mathrm{ft} / \mathrm{ft}$
Flow through launder $=0.61 \mathrm{mgd}$

Critical depth $=0.3 \mathrm{ft}$
Downstream depth $=0.76 \mathrm{ft}$
Upstream depth $=0.45 \mathrm{ft}$

SC \#2 Effluent Weir
109.37

Invert of V notch $=109.3$
Angle of V notch $=90$ degrees
Number of notches $=594$
Total flow over weir $=1.22 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.07 \mathrm{ft}$
SC \#2
109.37

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=75 \mathrm{ft}$
Channel width/diameter $=75 \mathrm{ft}$
Flow = 2.2 mgd
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=1452.75 \mathrm{ft} \wedge 2$
Hydraulic radius $=12.773$
Normal depth = infinite
Critical depth $=0.04 \mathrm{ft}$
Depth downstream $=19.37 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=19.37 \mathrm{ft}$
Velocity $=0 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

SC \#2 Inlet Ports

109.38

Opening type $=$ rectangular orifice
Opening diameter/width $=6$ in
Opening height $=30$ in
Invert $=106$
Number of openings $=6$
Flow through opening(s) $=2.421 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through opening(s) $=0.5 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Orifice loss $=0.01 \mathrm{ft}$
Downstream water level = 109.37
Upstream water level $=109.38$

Pipe shape $=$ Circular
Diameter $=36$ in

Length $=200 \mathrm{ft}$
Flow $=2.2 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=2$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.01 \mathrm{ft}$
Total loss $=0.01 \mathrm{ft}$
SC \#2 Influent Box
109.39

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=3 \mathrm{ft}$
Channel width/diameter $=7.5 \mathrm{ft}$
Flow = 2.2 mgd
Downstream channel invert $=100$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=70.43 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.68$
Normal depth = infinite
Critical depth $=0.19 \mathrm{ft}$
Depth downstream $=9.39 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=9.39 \mathrm{ft}$
Velocity $=0.05 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
SC Dist Box Weir \#2
110.28

Weir invert (top of weir) = 110
Weir length $=7 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=2.2 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.28 \mathrm{ft}$
SC Distribution Box
110.28

Channel shape = Rectangular
Manning's ' n ' $=0.012$
Channel length $=9 \mathrm{ft}$
Channel width/diameter $=30 \mathrm{ft}$
Flow $=7.31$ mgd

Downstream channel invert $=105.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=143.33 \mathrm{ft} \wedge 2$
Hydraulic radius $=3.623$
Normal depth = infinite
Critical depth $=0.16 \mathrm{ft}$
Depth downstream $=4.78 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.78 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 36-IN Effluent

110.35

Pipe shape $=$ Circular
Diameter $=36$ in
Length $=5 \mathrm{ft}$
Flow $=7.31 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.76$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor $=1$
Velocity $=1.6 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0.07 \mathrm{ft}$
Total loss $=0.07 \mathrm{ft}$
AB Exit Gate
110.46

Opening type = circular gate
Opening diameter/width $=36$ in
Gate height $=36$ in
Invert $=105.5$
Number of gates = 1
Flow through gate(s) $=7.31 \mathrm{mgd}$
Total area of opening $(\mathrm{s})=7.07 \mathrm{ft} \wedge 2$
Velocity through gate $(\mathrm{s})=1.6 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.11 \mathrm{ft}$
Downstream water level = 110.35
Upstream water level $=110.46$

Channel shape = Rectangular
Manning's 'n' = 0.012

Channel length $=3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=7.31$ mgd
Downstream channel invert $=105.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=14.88 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.152$
Normal depth = infinite
Critical depth $=0.76 \mathrm{ft}$
Depth downstream $=4.96 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.96 \mathrm{ft}$
Velocity $=0.76 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
AB 3 ML Effluent Channel
110.47

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=5.5 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=7.31 \mathrm{mgd}$
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=3.65 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.672$
Normal depth = infinite
Critical depth $=0.76 \mathrm{ft}$
Depth downstream $=1.21 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.22 \mathrm{ft}$
Velocity $=3.11 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3 Effluent Sluice Gate

110.56

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=30$ in
Invert = 109.25
Number of gates = 1
Flow through gate(s) $=7.31 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=1.51 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.09 \mathrm{ft}$
Downstream water level $=110.47$

Upstream water level $=110.56$

AB 3 Zone E

110.57

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=15.43 \mathrm{mgd}$
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=281.27 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.844$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=14.06 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.07 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall E to D

110.6

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir $=15.43 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.6 \mathrm{ft}$

Contact Stabilization Influent Pipe

110.63

Pipe shape = Circular
Diameter $=24$ in
Length $=100 \mathrm{ft}$
Flow $=4.06 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=0$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=1$
Solids factor $=1$
Velocity $=2 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.07 \mathrm{ft}$
Fitting loss $=0 \mathrm{ft}$
Total loss $=0.07 \mathrm{ft}$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=15.43$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=281.91 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.85$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=14.1 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.1 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall D to C

110.63

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=15.43 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.63 \mathrm{ft}$

AB 4 Zone C

110.63

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length = 130 ft
Channel width/diameter $=20 \mathrm{ft}$
Flow $=15.43$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=282.55 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.855$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=14.13 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.13 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Weir invert (top of weir) = 109

Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=15.43 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.66 \mathrm{ft}$
AB Zone B
110.66

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=15.43$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=283.19 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.861$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=14.16 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.16 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Baffle Wall B to A
Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir $=15.43 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.69 \mathrm{ft}$

AB Zone A

110.69

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=15.43 \mathrm{mgd}$
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=283.83 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.866$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=14.19 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$

Depth upstream $=14.19 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
AB 4 Influent Sluice Gate
110.72

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=30$ in
Invert = 110
Number of gates = 2
Flow through gate(s) $=7.31 \mathrm{mgd}$
Total area of opening(s) $=15 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=0.75 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.02 \mathrm{ft}$
Downstream water level $=110.69$
Upstream water level $=110.72$
AB 4 Influent Channel
110.72

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=7.31 \mathrm{mgd}$
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=4.4 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.742$
Normal depth = infinite
Critical depth $=0.76 \mathrm{ft}$
Depth downstream $=1.47 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.47 \mathrm{ft}$
Velocity $=2.57 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 4 Influent Slopped Channel

110.71

Channel shape = Rectangular
Manning's ' n ' $=0.012$
Channel length $=5.3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=7.31 \mathrm{mgd}$
Downstream channel invert $=109.25$
Channel slope $=0.0141 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=4.28 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.732$

Normal depth $=0.5 \mathrm{ft}$
Critical depth $=0.76 \mathrm{ft}$
Depth downstream $=1.47 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.39 \mathrm{ft}$
Velocity $=2.56 \mathrm{ft} / \mathrm{s}$
Flow profile = Steep

AB 4 Influent Split Box-Channel

110.83

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=12.7 \mathrm{ft}$
Channel width/diameter $=4.5 \mathrm{ft}$
Flow $=7.31$ mgd
Downstream channel invert $=110$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=3.29 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.552$
Normal depth = infinite
Critical depth $=0.58 \mathrm{ft}$
Depth downstream $=0.71 \mathrm{ft}$
Bend loss $=0.08 \mathrm{ft}$
Depth upstream $=0.83 \mathrm{ft}$
Velocity $=3.54 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3/4 42-IN Influent Pipe

110.87

Pipe shape = Circular
Diameter $=42$ in
Length $=58 \mathrm{ft}$
Flow $=7.31 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.5$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.18 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.03 \mathrm{ft}$
Total loss $=0.04 \mathrm{ft}$

42-IN Tee to AB 3/4

Tee type = run of tee
Diameter of pipe run past tee $=42$ in

Flow through tee $=7.31 \mathrm{mgd}$
Velocity through tee $=1.18 \mathrm{ft} / \mathrm{s}$
Total tee K value $=0.6$
Overall head loss $=0.01 \mathrm{ft}$
42-IN PC Effluent to PC Junction Box
111.03

Pipe shape $=$ Circular
Diameter $=42$ in
Length $=244 \mathrm{ft}$
Flow $=7.31$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=2$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=2.348$
Solids factor = 1
Velocity $=1.18 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.11 \mathrm{ft}$
Fitting loss $=0.04 \mathrm{ft}$
Total loss $=0.15 \mathrm{ft}$
Prim. Eff. Junction Box
111.03

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=16.5 \mathrm{ft}$
Channel width/diameter $=7 \mathrm{ft}$
Flow $=7.31 \mathrm{mgd}$
Downstream channel invert $=104.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=45.71 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.279$
Normal depth = infinite
Critical depth $=0.43 \mathrm{ft}$
Depth downstream $=6.53 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=6.53 \mathrm{ft}$
Velocity $=0.25 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 24-IN Effluent
111.08

Pipe shape = Circular
Diameter $=24$ in
Length $=120 \mathrm{ft}$
Flow $=1.353 \mathrm{mgd}$
Friction method = Hazen Williams

Friction factor $=100$
Total fitting K value $=2.4$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=0.67 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.04 \mathrm{ft}$
Fitting loss $=0.02 \mathrm{ft}$
Total loss $=0.05 \mathrm{ft}$

PC 2 Effluent Box

111.08

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=1.5 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=1.353$ mgd
Downstream channel invert $=106$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=20.32 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.435$
Normal depth = infinite
Critical depth $=0.2 \mathrm{ft}$
Depth downstream $=5.08 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=5.08 \mathrm{ft}$
Velocity $=0.1 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 Effluent Launder
112.64

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=78 \mathrm{ft}$
Channel width/diameter $=1 \mathrm{ft}$
Flow $=0.677$ mgd
Downstream channel invert $=112$
Channel slope $=0.0015 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=0.43 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.23$
Normal depth $=0.54 \mathrm{ft}$
Critical depth $=0.32 \mathrm{ft}$
Depth downstream $=0.32 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=0.53 \mathrm{ft}$
Velocity $=3.23 \mathrm{ft} / \mathrm{s}$

Flow profile $=$ Mild
PC 2 Effluent Weir
114.36

Invert of V notch $=114.25$
Angle of V notch $=90$ degrees
Number of notches $=212$
Total flow over weir $=1.353 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.11 \mathrm{ft}$
PC 2 Basin
114.36

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=45 \mathrm{ft}$
Channel width/diameter $=45 \mathrm{ft}$
Flow $=1.353$ mgd
Downstream channel invert $=106$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=376.19 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.095$
Normal depth = infinite
Critical depth $=0.04 \mathrm{ft}$
Depth downstream $=8.36 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=8.36 \mathrm{ft}$
Velocity $=0.01 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 Influent Well
114.4

Pipe shape = Circular
Diameter $=18$ in
Length $=7 \mathrm{ft}$
Flow $=1.353$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.25$
Pipe area $=1.77 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.18 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.03 \mathrm{ft}$
Total loss $=0.04 \mathrm{ft}$

Diameter $=24$ in
Length $=10 \mathrm{ft}$
Flow $=1.353$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=0.42$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=0.67 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0 \mathrm{ft}$
Total loss $=0.01 \mathrm{ft}$
36-IN PC Influent Pipe
114.42

Pipe shape = Circular
Diameter $=24$ in
Length $=10 \mathrm{ft}$
Flow $=1.353$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=0.42$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=0.67 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0 \mathrm{ft}$
Total loss $=0.01 \mathrm{ft}$
Drop Box to Primary Clarifier No 2
Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=3.5 \mathrm{ft}$
Channel width/diameter $=3.5 \mathrm{ft}$
Flow $=1.353 \mathrm{mgd}$
Downstream channel invert $=108$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=22.47 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.375$
Normal depth = infinite
Critical depth $=0.22 \mathrm{ft}$
Depth downstream $=6.42 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$

Depth upstream $=6.42 \mathrm{ft}$
Velocity $=0.09 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Primary Clarifier Distribution Box Weir
117.32

Weir invert (top of weir) = 117
Weir length $=3.5 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=1.347 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.32 \mathrm{ft}$

Pinole MM-MD Flow.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
11.3 mgd	9.04 mgd	22.6 mgd	-----

Section Description
Water Surface Elevation
Starting water surface elevation 107

Effluent Weir

Weir invert (top of weir) $=107.15$
Weir length $=4.5 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=5.65 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.7 \mathrm{ft}$
Chlorine Contact Basin
107.88

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=140 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=5.65$ mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=18.4 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.394$
Normal depth = infinite
Critical depth $=0.53 \mathrm{ft}$
Depth downstream $=4.6 \mathrm{ft}$
Bend loss $=0.03 \mathrm{ft}$
Depth upstream $=4.63 \mathrm{ft}$
Velocity $=0.48 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Slide Gate
107.96

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=24$ in
Invert $=103.25$
Number of gates $=1$
Flow through gate(s) $=5.65 \mathrm{mgd}$

Total area of opening(s) $=6 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=1.46 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.09 \mathrm{ft}$
Downstream water level $=107.88$
Upstream water level $=107.96$

CC Basin Influent Box

107.96

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=8 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=11.3$ mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=18.85 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.404$
Normal depth = infinite
Critical depth $=0.84 \mathrm{ft}$
Depth downstream $=4.71 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.71 \mathrm{ft}$
Velocity $=0.93 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal

42-IN SC Effluent

108.09

Pipe shape = Circular
Diameter $=42$ in
Length $=116 \mathrm{ft}$
Flow $=11.3 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.75$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor = 1
Velocity $=1.82 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.03 \mathrm{ft}$
Fitting loss $=0.09 \mathrm{ft}$
Total loss $=0.12 \mathrm{ft}$
SC \#2 Effluent Connection
108.12

Tee type = branch to line
Diameter of pipe line $=42$ in
Diameter of pipe branch $=30$ in

Flow through tee $=3.39 \mathrm{mgd}$
Velocity through tee $=1.07 \mathrm{ft} / \mathrm{s}$
Total tee K value $=1.69$
Overall head loss $=0.03 \mathrm{ft}$

SC \#2-36-IN Effluent
108.13

Pipe shape $=$ Circular
Diameter $=36$ in
Length $=70 \mathrm{ft}$
Flow $=3.39 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor $=1$
Velocity $=0.74 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0.01 \mathrm{ft}$
Total loss $=0.01 \mathrm{ft}$
SC \#2 Effluent Box
108.13

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=4 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=3.748$ mgd
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=72.52 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.801$
Normal depth = infinite
Critical depth $=0.4 \mathrm{ft}$
Depth downstream $=18.13 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=18.13 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
SC \#2 Effluent Launder 108.45

Launder invert = 107
Launder length $=100 \mathrm{ft}$
Launder width $=1 \mathrm{ft}$
Launder slope $=0.004 \mathrm{ft} / \mathrm{ft}$
Flow through launder $=1.7 \mathrm{mgd}$

Critical depth $=0.6 \mathrm{ft}$
Downstream depth $=1.13 \mathrm{ft}$
Upstream depth $=1.05 \mathrm{ft}$

SC \#2 Effluent Weir
109.41

Invert of V notch $=109.3$
Angle of V notch $=90$ degrees
Number of notches $=594$
Total flow over weir $=3.748 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.11 \mathrm{ft}$
SC \#2
109.41

Channel shape = Rectangular
Manning's 'n' = 0.012
Channel length $=75 \mathrm{ft}$
Channel width/diameter $=75 \mathrm{ft}$
Flow $=6.1$ mgd
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=1455.7 \mathrm{ft} \wedge 2$
Hydraulic radius $=12.79$
Normal depth = infinite
Critical depth $=0.08 \mathrm{ft}$
Depth downstream $=19.41 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=19.41 \mathrm{ft}$
Velocity $=0.01 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal

SC \#2 Inlet Ports

109.48

Opening type $=$ rectangular orifice
Opening diameter/width $=6$ in
Opening height $=30$ in
Invert $=106$
Number of openings $=6$
Flow through opening(s) $=6.2 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through opening $(\mathrm{s})=1.28 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Orifice loss $=0.07 \mathrm{ft}$
Downstream water level = 109.41
Upstream water level $=109.48$
SC \#2-36-IN Influent
109.57

Pipe shape $=$ Circular
Diameter $=36$ in

Length $=200 \mathrm{ft}$
Flow $=6.1 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=2$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor = 1
Velocity $=1.34 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.04 \mathrm{ft}$
Fitting loss $=0.06 \mathrm{ft}$
Total loss $=0.1 \mathrm{ft}$
SC \#2 Influent Box
109.57

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=3 \mathrm{ft}$
Channel width/diameter $=7 \mathrm{ft}$
Flow $=6.1$ mgd
Downstream channel invert $=100$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=66.99 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.563$
Normal depth = infinite
Critical depth $=0.38 \mathrm{ft}$
Depth downstream $=9.57 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=9.57 \mathrm{ft}$
Velocity $=0.14 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

SC Dist Box Weir \#5

110.57

Weir invert (top of weir) = 110
Weir length $=7 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir $=6.458 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.57 \mathrm{ft}$
SC Distribution Box
Channel shape = Rectangular
Manning's ' n ' $=0.012$
Channel length $=9 \mathrm{ft}$
Channel width/diameter $=35 \mathrm{ft}$
Flow $=20.34$ mgd

Downstream channel invert $=105.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=177.41 \mathrm{ft} \wedge 2$
Hydraulic radius $=3.93$
Normal depth $=$ infinite
Critical depth $=0.29 \mathrm{ft}$
Depth downstream $=5.07 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=5.07 \mathrm{ft}$
Velocity $=0.18 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal

AB 36-IN Effluent

110.71

Pipe shape $=$ Circular
Diameter $=36$ in
Length $=5 \mathrm{ft}$
Flow = 10.17 mgd
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.76$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor = 1
Solids factor $=1$
Velocity $=2.23 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0.14 \mathrm{ft}$
Total loss $=0.14 \mathrm{ft}$
Effluent Gate
110.92

Opening type = circular gate
Opening diameter/width $=36$ in
Gate height $=36$ in
Invert $=106$
Number of gates = 1
Flow through gate(s) $=10.179 \mathrm{mgd}$
Total area of opening $(\mathrm{s})=7.07 \mathrm{ft} \wedge 2$
Velocity through gate $(\mathrm{s})=2.23 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.21 \mathrm{ft}$
Downstream water level = 110.71
Upstream water level $=110.92$

Channel shape = Rectangular
Manning's 'n' = 0.012

Channel length $=3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=10.179$ mgd
Downstream channel invert $=105.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=16.27 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.175$
Normal depth = infinite
Critical depth $=0.95 \mathrm{ft}$
Depth downstream $=5.42 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=5.43 \mathrm{ft}$
Velocity $=0.97 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal
AB 3 ML Effluent Channel
110.93

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=5.5 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=10.179$ mgd
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=5.04 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.792$
Normal depth = infinite
Critical depth $=0.95 \mathrm{ft}$
Depth downstream $=1.68 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.68 \mathrm{ft}$
Velocity $=3.13 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3 Effluent Sluice Gate

Opening type = rectangular gate
Opening diameter/width = 36 in
Gate height $=30$ in
Invert = 109.25
Number of gates = 1
Flow through gate(s) $=10.179 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=2.1 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.18 \mathrm{ft}$
Downstream water level $=110.93$

Upstream water level = 111.11
AB 3 Zone E
111.11

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=21.479$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=292.23 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.937$
Normal depth = infinite
Critical depth $=0.44 \mathrm{ft}$
Depth downstream $=14.61 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.61 \mathrm{ft}$
Velocity $=0.11 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall E to D

111.14

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=21.479$ mgd
Weir submergence = fully submerged
Head over weir $=2.14 \mathrm{ft}$

Contact Stabilization Influent Pipe

111.57

Pipe shape = Circular
Diameter $=24$ in
Length $=100 \mathrm{ft}$
Flow $=11.3 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=0$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor = 1
Solids factor $=1$
Velocity $=5.56 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.46 \mathrm{ft}$
Fitting loss $=0 \mathrm{ft}$
Total loss $=0.46 \mathrm{ft}$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=21.479$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=292.87 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.942$
Normal depth = infinite
Critical depth $=0.44 \mathrm{ft}$
Depth downstream $=14.64 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.65 \mathrm{ft}$
Velocity $=0.11 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall D to C

111.18

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=21.479 \mathrm{mgd}$
Weir submergence = fully submerged Head over weir $=2.18 \mathrm{ft}$

AB 4 Zone C

111.18

Channel shape = Rectangular
Manning's 'n' = 0.012
Channel length $=130 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=21.479$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=293.51 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.947$
Normal depth = infinite
Critical depth $=0.44 \mathrm{ft}$
Depth downstream $=14.68 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.68 \mathrm{ft}$
Velocity $=0.11 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Weir invert (top of weir) = 109

Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=21.479 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=2.21 \mathrm{ft}$
AB Zone B
111.21

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=21.479$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=294.15 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.953$
Normal depth = infinite
Critical depth $=0.44 \mathrm{ft}$
Depth downstream $=14.71 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.71 \mathrm{ft}$
Velocity $=0.11 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Baffle Wall B to A
111.24

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir $=21.479$ mgd
Weir submergence = fully submerged
Head over weir $=2.24 \mathrm{ft}$

AB Zone A

Channel shape = Rectangular
Manning's 'n' = 0.012
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=21.479$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=294.79 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.958$
Normal depth = infinite
Critical depth $=0.44 \mathrm{ft}$
Depth downstream $=14.74 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$

Depth upstream $=14.74 \mathrm{ft}$
Velocity $=0.11 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
AB 4 Influent Sluice Gate
111.29

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=30$ in
Invert = 110
Number of gates $=2$
Flow through gate $(\mathrm{s})=10.179 \mathrm{mgd}$
Total area of opening(s) $=15 \mathrm{ft} \wedge 2$
Velocity through gate $(\mathrm{s})=1.05 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.04 \mathrm{ft}$
Downstream water level = 111.24
Upstream water level $=111.29$

AB 4 Influent Channel

111.29

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=4 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=10.179$ mgd
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=6.11 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.864$
Normal depth = infinite
Critical depth $=0.95 \mathrm{ft}$
Depth downstream $=2.04 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=2.04 \mathrm{ft}$
Velocity $=2.58 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 4 Influent Sloped Channel

111.28

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=5.3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=10.179$ mgd
Downstream channel invert $=109.25$
Channel slope $=0.0141 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=6 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.857$

Normal depth $=0.62 \mathrm{ft}$
Critical depth $=0.95 \mathrm{ft}$
Depth downstream $=2.04 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.96 \mathrm{ft}$
Velocity $=2.57 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Steep

AB 4 Influent Split Box-Channel

111.34

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=12 \mathrm{ft}$
Channel width/diameter $=4.5 \mathrm{ft}$
Flow $=10.179$ mgd
Downstream channel invert $=110$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=5.79 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.819$
Normal depth = infinite
Critical depth $=0.72 \mathrm{ft}$
Depth downstream $=1.28 \mathrm{ft}$
Bend loss $=0.05 \mathrm{ft}$
Depth upstream $=1.34 \mathrm{ft}$
Velocity $=2.73 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3/4 42-IN Influent Pipe

111.42

Pipe shape = Circular
Diameter $=42$ in
Length $=58 \mathrm{ft}$
Flow $=10.179$ mgd
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.5$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor = 1
Solids factor $=1$
Velocity $=1.64 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.06 \mathrm{ft}$
Total loss $=0.08 \mathrm{ft}$
42-IN Tee to AB 3/4
Tee type = run of tee
Diameter of pipe run past tee $=42$ in

Flow through tee $=10.179 \mathrm{mgd}$
Velocity through tee $=1.64 \mathrm{ft} / \mathrm{s}$
Total tee K value $=0.6$
Overall head loss $=0.02 \mathrm{ft}$
42-IN PC Effluent to PC Junction Box
112.33

Pipe shape $=$ Circular
Diameter $=42$ in
Length $=244 \mathrm{ft}$
Flow = 20.34 mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=2.348$
Solids factor $=1$
Velocity $=3.27 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.72 \mathrm{ft}$
Fitting loss $=0.17 \mathrm{ft}$
Total loss $=0.88 \mathrm{ft}$
Prim. Eff. Junction Box
112.33

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=16.5 \mathrm{ft}$
Channel width/diameter $=7 \mathrm{ft}$
Flow $=20.34$ mgd
Downstream channel invert $=104.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=54.81 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.419$
Normal depth $=$ infinite
Critical depth $=0.86 \mathrm{ft}$
Depth downstream $=7.83 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=7.83 \mathrm{ft}$
Velocity $=0.57 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 24-IN Effluent
112.48

Pipe shape = Circular
Diameter $=24$ in
Length $=15 \mathrm{ft}$
Flow $=3.767$ mgd
Friction method = Hazen Williams

Friction factor $=100$
Total fitting K value $=2.2$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.85 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.03 \mathrm{ft}$
Fitting loss $=0.12 \mathrm{ft}$
Total loss $=0.15 \mathrm{ft}$

PC 2 Effluent Box

112.48

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=1.5 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=3.767$ mgd
Downstream channel invert $=106$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=25.92 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.528$
Normal depth = infinite
Critical depth $=0.4 \mathrm{ft}$
Depth downstream $=6.48 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=6.48 \mathrm{ft}$
Velocity $=0.22 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

PC 2 Effluent Launder

113.11

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=71 \mathrm{ft}$
Channel width/diameter $=1 \mathrm{ft}$
Flow $=1.883$ mgd
Downstream channel invert $=112$
Channel slope $=0.0015 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=0.82 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.311$
Normal depth $=1.22 \mathrm{ft}$
Critical depth $=0.64 \mathrm{ft}$
Depth downstream $=0.64 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1 \mathrm{ft}$
Velocity $=4.54 \mathrm{ft} / \mathrm{s}$

Flow profile $=$ Mild
PC 2 Effluent Weir
114.41

Invert of V notch $=114.25$
Angle of V notch $=90$ degrees
Number of notches $=212$
Total flow over weir $=3.767 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.16 \mathrm{ft}$
PC 2 Basin
114.42

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=45 \mathrm{ft}$
Channel width/diameter $=45 \mathrm{ft}$
Flow $=3.767$ mgd
Downstream channel invert $=106$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=378.68 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.125$
Normal depth = infinite
Critical depth $=0.08 \mathrm{ft}$
Depth downstream $=8.41 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=8.42 \mathrm{ft}$
Velocity $=0.02 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 Influent Well
114.68

Pipe shape = Circular
Diameter $=18$ in
Length $=7 \mathrm{ft}$
Flow $=3.767$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.25$
Pipe area $=1.77 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=2.348$
Solids factor $=1$
Velocity $=3.3 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.06 \mathrm{ft}$
Fitting loss $=0.21 \mathrm{ft}$
Total loss $=0.27 \mathrm{ft}$
24-IN Influent Pipe
Pipe shape = Circular

Diameter $=24$ in
Length $=10 \mathrm{ft}$
Flow $=3.767 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=0.42$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.85 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.02 \mathrm{ft}$
Fitting loss $=0.02 \mathrm{ft}$
Total loss $=0.04 \mathrm{ft}$
36-IN PC Influent Pipe
114.83

Pipe shape = Circular
Diameter $=24$ in
Length $=10 \mathrm{ft}$
Flow $=3.767$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.67$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.85 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.02 \mathrm{ft}$
Fitting loss $=0.09 \mathrm{ft}$
Total loss $=0.11 \mathrm{ft}$
Drop Box to Primary Clarifier No 2
Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=3.5 \mathrm{ft}$
Channel width/diameter $=3.5 \mathrm{ft}$
Flow $=3.767$ mgd
Downstream channel invert $=108$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=23.91 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.393$
Normal depth = infinite
Critical depth $=0.44 \mathrm{ft}$
Depth downstream $=6.83 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$

Depth upstream $=6.83 \mathrm{ft}$
Velocity $=0.24 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Primary Clarifier Distribution Box Weir
117.63

Weir invert (top of weir) = 117
Weir length $=3.5 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=3.748 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.63 \mathrm{ft}$

Pinole MM-MD Flow.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
6.06 mgd	4.87 mgd	12.18 mgd	-----

Section Description
Water Surface Elevation
Starting water surface elevation 107

Effluent Weir
107.61

Weir invert (top of weir) $=107.15$
Weir length $=4.5 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=3.03 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.46 \mathrm{ft}$
Chlorine Contact Basin
107.62

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=140 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=3.03$ mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=17.44 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.371$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=4.36 \mathrm{ft}$
Bend loss $=0.01 \mathrm{ft}$
Depth upstream $=4.37 \mathrm{ft}$
Velocity $=0.27 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Slide Gate
107.65

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=24$ in
Invert $=103.25$
Number of gates $=1$
Flow through gate(s) $=3.03 \mathrm{mgd}$

Total area of opening(s) $=6 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=0.78 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.02 \mathrm{ft}$
Downstream water level = 107.62
Upstream water level $=107.65$

CC Basin Influent Box

107.65

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=8 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=6.06$ mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=17.58 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.375$
Normal depth = infinite
Critical depth $=0.55 \mathrm{ft}$
Depth downstream $=4.4 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.4 \mathrm{ft}$
Velocity $=0.53 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal
42-IN SC Effluent
107.68

Pipe shape = Circular
Diameter $=42$ in
Length $=116 \mathrm{ft}$
Flow $=6.06$ mgd
Friction method = Hazen Williams
Friction factor = 120
Total fitting K value $=1.75$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.97 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.03 \mathrm{ft}$
Total loss $=0.04 \mathrm{ft}$
SC \#2 Effluent Connection
107.69

Tee type = branch to line
Diameter of pipe line $=42$ in
Diameter of pipe branch $=30$ in

Flow through tee $=1.818 \mathrm{mgd}$
Velocity through tee $=0.57 \mathrm{ft} / \mathrm{s}$
Total tee K value $=1.69$
Overall head loss $=0.01 \mathrm{ft}$
SC \#2-36-IN Effluent 107.69

Pipe shape $=$ Circular
Diameter $=36$ in
Length $=70 \mathrm{ft}$
Flow $=1.818$ mgd
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor = 1
Velocity $=0.4 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0 \mathrm{ft}$
Total loss $=0 \mathrm{ft}$

SC \#2 Effluent Box

107.69

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=4 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=2.01$ mgd
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=70.76 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.797$
Normal depth = infinite
Critical depth $=0.27 \mathrm{ft}$
Depth downstream $=17.69 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=17.69 \mathrm{ft}$
Velocity $=0.04 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
SC \#2 Effluent Launder
Launder invert = 107
Launder length $=100 \mathrm{ft}$
Launder width $=1 \mathrm{ft}$
Launder slope $=0.004 \mathrm{ft} / \mathrm{ft}$
Flow through launder $=0.912 \mathrm{mgd}$

Critical depth $=0.4 \mathrm{ft}$
Downstream depth $=0.69 \mathrm{ft}$
Upstream depth $=0.47 \mathrm{ft}$
SC \#2 Effluent Weir
109.38

Invert of V notch $=109.3$
Angle of V notch $=90$ degrees
Number of notches $=594$
Total flow over weir $=2.01 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.08 \mathrm{ft}$

SC \#2

109.39

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=75 \mathrm{ft}$
Channel width/diameter $=75 \mathrm{ft}$
Flow $=3.278$ mgd
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=1453.9 \mathrm{ft} \wedge 2$
Hydraulic radius $=12.779$
Normal depth = infinite
Critical depth $=0.05 \mathrm{ft}$
Depth downstream $=19.38 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=19.39 \mathrm{ft}$
Velocity $=0 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

SC \#2 Inlet Ports

109.41

Opening type $=$ rectangular orifice
Opening diameter/width $=6$ in
Opening height $=30$ in
Invert $=106$
Number of openings $=6$
Flow through opening(s) $=3.332 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through opening $(\mathrm{s})=0.69 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Orifice loss $=0.02 \mathrm{ft}$
Downstream water level = 109.39
Upstream water level = 109.41

Pipe shape $=$ Circular
Diameter $=36$ in

Length $=200 \mathrm{ft}$
Flow $=3.278 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=2$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor $=1$
Velocity $=0.72 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.02 \mathrm{ft}$
Total loss $=0.03 \mathrm{ft}$

SC \#2 Influent Box
109.43

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=3 \mathrm{ft}$
Channel width/diameter $=7 \mathrm{ft}$
Flow $=3.278$ mgd
Downstream channel invert $=100$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=66.01 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.553$
Normal depth = infinite
Critical depth $=0.25 \mathrm{ft}$
Depth downstream $=9.43 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=9.43 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
SC Dist Box Weir \#5
110.38

Weir invert (top of weir) = 110
Weir length $=7 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=3.47 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.38 \mathrm{ft}$

SC Distribution Box

Channel shape = Rectangular
Manning's ' n ' $=0.012$
Channel length $=9 \mathrm{ft}$
Channel width/diameter $=35 \mathrm{ft}$
Flow $=10.93$ mgd

Downstream channel invert $=105.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=170.66 \mathrm{ft} \wedge 2$
Hydraulic radius $=3.813$
Normal depth = infinite
Critical depth $=0.19 \mathrm{ft}$
Depth downstream $=4.88 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.88 \mathrm{ft}$
Velocity $=0.1 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal

AB 36-IN Effluent

110.42

Pipe shape $=$ Circular
Diameter $=36$ in
Length $=5 \mathrm{ft}$
Flow $=5.465 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.76$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor $=1$
Velocity $=1.2 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0.04 \mathrm{ft}$
Total loss $=0.04 \mathrm{ft}$
Effluent Gate
110.48

Opening type = circular gate
Opening diameter/width $=36$ in
Gate height $=36$ in
Invert $=106$
Number of gates = 1
Flow through gate(s) $=5.47 \mathrm{mgd}$
Total area of opening $(\mathrm{s})=7.07 \mathrm{ft} \wedge 2$
Velocity through gate $(\mathrm{s})=1.2 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.06 \mathrm{ft}$
Downstream water level $=110.42$
Upstream water level $=110.48$

Channel shape = Rectangular
Manning's 'n' = 0.012

Channel length $=3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=5.47$ mgd
Downstream channel invert $=105.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=14.95 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.153$
Normal depth = infinite
Critical depth $=0.63 \mathrm{ft}$
Depth downstream $=4.98 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.98 \mathrm{ft}$
Velocity $=0.57 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
AB 3 ML Effluent Channel
110.49

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=5.5 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=5.47 \mathrm{mgd}$
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=3.71 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.678$
Normal depth = infinite
Critical depth $=0.63 \mathrm{ft}$
Depth downstream $=1.23 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.24 \mathrm{ft}$
Velocity $=2.29 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3 Effluent Sluice Gate

110.54

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=30$ in
Invert = 109.25
Number of gates = 1
Flow through gate(s) $=5.47 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through gate(s) = $1.13 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.05 \mathrm{ft}$
Downstream water level $=110.49$

Upstream water level $=110.54$

AB 3 Zone E

110.54

Channel shape = Rectangular
Manning's 'n' = 0.012
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=11.56$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=280.81 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.84$
Normal depth $=$ infinite
Critical depth $=0.29 \mathrm{ft}$
Depth downstream $=14.04 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.04 \mathrm{ft}$
Velocity $=0.06 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall E to D

110.56

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=11.56 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.56 \mathrm{ft}$

Contact Stabilization Influent Pipe

110.69

Pipe shape = Circular
Diameter $=24$ in
Length $=100 \mathrm{ft}$
Flow $=6.06 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=0$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor = 1
Solids factor $=1$
Velocity $=2.98 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.14 \mathrm{ft}$
Fitting loss $=0 \mathrm{ft}$
Total loss $=0.14 \mathrm{ft}$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow = 11.56 mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=281.25 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.844$
Normal depth = infinite
Critical depth $=0.29 \mathrm{ft}$
Depth downstream $=14.06 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.06 \mathrm{ft}$
Velocity $=0.06 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall D to C

110.58

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir $=11.56 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.58 \mathrm{ft}$

AB 4 Zone C

110.59

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length = 130 ft
Channel width/diameter $=20 \mathrm{ft}$
Flow $=11.56$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=281.69 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.848$
Normal depth = infinite
Critical depth $=0.29 \mathrm{ft}$
Depth downstream $=14.08 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.09 \mathrm{ft}$
Velocity $=0.06 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Baffle Wall C to B
Weir invert (top of weir) = 109

Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir $=11.56 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.61 \mathrm{ft}$
AB Zone B
110.61

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=11.56 \mathrm{mgd}$
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=282.13 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.852$
Normal depth = infinite
Critical depth $=0.29 \mathrm{ft}$
Depth downstream $=14.11 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=14.11 \mathrm{ft}$
Velocity $=0.06 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Baffle Wall B to A
110.63

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir $=11.56 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=1.63 \mathrm{ft}$

AB Zone A

110.63

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=11.56$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=282.57 \mathrm{ft} \wedge 2$
Hydraulic radius $=5.856$
Normal depth = infinite
Critical depth $=0.29 \mathrm{ft}$
Depth downstream $=14.13 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$

Depth upstream $=14.13 \mathrm{ft}$
Velocity $=0.06 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
AB 4 Influent Sluice Gate
110.64

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=30$ in
Invert = 110
Number of gates = 2
Flow through gate(s) $=5.47 \mathrm{mgd}$
Total area of opening(s) $=15 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=0.56 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.01 \mathrm{ft}$
Downstream water level $=110.63$
Upstream water level $=110.64$
AB 4 Influent Channel
110.65

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=4 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=5.47 \mathrm{mgd}$
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=4.18 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.723$
Normal depth = infinite
Critical depth $=0.63 \mathrm{ft}$
Depth downstream $=1.39 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.4 \mathrm{ft}$
Velocity $=2.02 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
AB 4 Influent Sloped Channel
110.64

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=5.3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=5.47 \mathrm{mgd}$
Downstream channel invert $=109.25$
Channel slope $=0.0141 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=4.07 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.712$

Normal depth $=0.41 \mathrm{ft}$
Critical depth $=0.63 \mathrm{ft}$
Depth downstream $=1.4 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.31 \mathrm{ft}$
Velocity $=2.02 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Steep

AB 4 Influent Split Box-Channel

110.72

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=12 \mathrm{ft}$
Channel width/diameter $=4.5 \mathrm{ft}$
Flow $=5.47 \mathrm{mgd}$
Downstream channel invert $=110$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=2.94 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.506$
Normal depth = infinite
Critical depth $=0.48 \mathrm{ft}$
Depth downstream $=0.64 \mathrm{ft}$
Bend loss $=0.05 \mathrm{ft}$
Depth upstream $=0.72 \mathrm{ft}$
Velocity $=2.94 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3/4 42-IN Influent Pipe

110.74

Pipe shape = Circular
Diameter $=42$ in
Length $=58 \mathrm{ft}$
Flow $=5.47 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.5$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.88 \mathrm{ft} / \mathrm{s}$
Friction loss $=0 \mathrm{ft}$
Fitting loss $=0.02 \mathrm{ft}$
Total loss $=0.02 \mathrm{ft}$
42-IN Tee to AB 3/4
110.75

Tee type = run of tee
Diameter of pipe run past tee $=42$ in

Flow through tee $=5.47 \mathrm{mgd}$
Velocity through tee $=0.88 \mathrm{ft} / \mathrm{s}$
Total tee K value $=0.6$
Overall head loss $=0.01 \mathrm{ft}$
42-IN PC Effluent to PC Junction Box
111.02

Pipe shape $=$ Circular
Diameter $=42$ in
Length $=244 \mathrm{ft}$
Flow = 10.93 mgd
Friction method $=$ Hazen Williams
Friction factor $=100$
Total fitting K value $=1$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.76 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.23 \mathrm{ft}$
Fitting loss $=0.05 \mathrm{ft}$
Total loss $=0.28 \mathrm{ft}$
Prim. Eff. Junction Box
111.02

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=16.5 \mathrm{ft}$
Channel width/diameter $=7 \mathrm{ft}$
Flow $=10.93$ mgd
Downstream channel invert $=104.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=45.64 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.278$
Normal depth = infinite
Critical depth $=0.57 \mathrm{ft}$
Depth downstream $=6.52 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=6.52 \mathrm{ft}$
Velocity $=0.37 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 24-IN Effluent
111.07

Pipe shape = Circular
Diameter $=24$ in
Length $=15 \mathrm{ft}$
Flow $=2.02 \mathrm{mgd}$
Friction method = Hazen Williams

Friction factor $=100$
Total fitting K value $=2.2$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=0.99 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.03 \mathrm{ft}$
Total loss $=0.04 \mathrm{ft}$

PC 2 Effluent Box

111.07

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=1.5 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=2.02 \mathrm{mgd}$
Downstream channel invert $=106$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=20.28 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.434$
Normal depth = infinite
Critical depth $=0.27 \mathrm{ft}$
Depth downstream $=5.07 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=5.07 \mathrm{ft}$
Velocity $=0.15 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

PC 2 Effluent Launder

112.78

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=71 \mathrm{ft}$
Channel width/diameter $=1 \mathrm{ft}$
Flow $=1.01 \mathrm{mgd}$
Downstream channel invert $=112$
Channel slope $=0.0015 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=0.55 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.261$
Normal depth $=0.74 \mathrm{ft}$
Critical depth $=0.42 \mathrm{ft}$
Depth downstream $=0.42 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=0.67 \mathrm{ft}$
Velocity $=3.69 \mathrm{ft} / \mathrm{s}$

Flow profile $=$ Mild
PC 2 Effluent Weir
114.38

Invert of V notch $=114.25$
Angle of V notch $=90$ degrees
Number of notches $=212$
Total flow over weir $=2.02 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.13 \mathrm{ft}$
PC 2 Basin
114.38

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=45 \mathrm{ft}$
Channel width/diameter $=45 \mathrm{ft}$
Flow $=2.02 \mathrm{mgd}$
Downstream channel invert $=106$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=377.05 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.105$
Normal depth = infinite
Critical depth $=0.05 \mathrm{ft}$
Depth downstream $=8.38 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=8.38 \mathrm{ft}$
Velocity $=0.01 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 Influent Well
114.46

Pipe shape = Circular
Diameter $=18$ in
Length $=7 \mathrm{ft}$
Flow $=2.02$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.25$
Pipe area $=1.77 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.77 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.02 \mathrm{ft}$
Fitting loss $=0.06 \mathrm{ft}$
Total loss $=0.08 \mathrm{ft}$

Diameter $=24$ in
Length $=10 \mathrm{ft}$
Flow $=2.02 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=0.42$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=0.99 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.01 \mathrm{ft}$
Total loss $=0.01 \mathrm{ft}$

36-IN PC Influent Pipe
114.5

Pipe shape = Circular
Diameter $=24$ in
Length $=10 \mathrm{ft}$
Flow $=2.02$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.67$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=0.99 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.03 \mathrm{ft}$
Total loss $=0.03 \mathrm{ft}$
Drop Box to Primary Clarifier No 2
Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=3.5 \mathrm{ft}$
Channel width/diameter $=3.5 \mathrm{ft}$
Flow $=2.02 \mathrm{mgd}$
Downstream channel invert $=108$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=22.75 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.379$
Normal depth = infinite
Critical depth $=0.29 \mathrm{ft}$
Depth downstream $=6.5 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$

Depth upstream $=6.5 \mathrm{ft}$
Velocity $=0.14 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Primary Clarifier Distribution Box Weir
117.41

Weir invert (top of weir) = 117
Weir length $=3.5 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=2.01 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.41 \mathrm{ft}$

Pinole PWWF Flow.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
20 mgd	10 mgd	--------	

Section Description
Water Surface Elevation
Starting water surface elevation 107

Effluent Weir

108.17

Weir invert (top of weir) $=107.15$
Weir length $=4.5 \mathrm{ft}$
Weir 'C' coefficient = 3.33
Flow over weir = 10 mgd
Weir submergence = unsubmerged
Head over weir $=1.02 \mathrm{ft}$
Chlorine Contact Basin
108.18

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=140 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow = 10 mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=19.69 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.422$
Normal depth = infinite
Critical depth $=0.77 \mathrm{ft}$
Depth downstream $=4.92 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=4.93 \mathrm{ft}$
Velocity $=0.79 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Slide Gate
108.45

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=24$ in
Invert $=103.25$
Number of gates $=1$
Flow through gate(s) $=10 \mathrm{mgd}$

Total area of opening(s) $=6 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=2.58 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.27 \mathrm{ft}$
Downstream water level = 108.18
Upstream water level $=108.45$

CC Basin Influent Box

108.45

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=8 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow = 20 mgd
Downstream channel invert $=103.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=20.8 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.444$
Normal depth = infinite
Critical depth $=1.23 \mathrm{ft}$
Depth downstream $=5.2 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=5.2 \mathrm{ft}$
Velocity $=1.49 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal

42-IN SC Effluent

108.83

Pipe shape = Circular
Diameter $=42$ in
Length $=116 \mathrm{ft}$
Flow = 20 mgd
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.75$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=3.22 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.1 \mathrm{ft}$
Fitting loss $=0.28 \mathrm{ft}$
Total loss $=0.38 \mathrm{ft}$
SC \#1 Effluent Connection
108.85

Tee type = branch to line
Diameter of pipe line $=42$ in
Diameter of pipe branch $=42$ in

Flow through tee $=6 \mathrm{mgd}$
Velocity through tee $=0.96 \mathrm{ft} / \mathrm{s}$
Total tee K value $=1.5$
Overall head loss $=0.02 \mathrm{ft}$
SC \#1-30-IN Effluent
108.87

Pipe shape $=$ Circular
Diameter $=42$ in
Length $=70 \mathrm{ft}$
Flow $=6 \mathrm{mgd}$
Friction method $=$ Hazen Williams
Friction factor $=120$
Total fitting K value $=1$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.96 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.01 \mathrm{ft}$
Total loss $=0.02 \mathrm{ft}$
SC \#1 Effluent Box
108.87

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=4 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=6 \mathrm{mgd}$
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=75.48 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.808$
Normal depth = infinite
Critical depth $=0.55 \mathrm{ft}$
Depth downstream $=18.87 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=18.87 \mathrm{ft}$
Velocity $=0.12 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
SC \#1 Effluent Launder
Launder invert = 107
Launder length $=100 \mathrm{ft}$
Launder width $=1 \mathrm{ft}$
Launder slope $=0.004 \mathrm{ft} / \mathrm{ft}$
Flow through launder $=3 \mathrm{mgd}$

Critical depth $=0.87 \mathrm{ft}$
Downstream depth $=1.87 \mathrm{ft}$
Upstream depth $=1.86 \mathrm{ft}$
SC \#1 Effluent Weir
109.43

Invert of V notch $=109.3$
Angle of V notch $=90$ degrees
Number of notches $=594$
Total flow over weir $=6 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.13 \mathrm{ft}$
SC \#1
109.43

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=75 \mathrm{ft}$
Channel width/diameter $=75 \mathrm{ft}$
Flow $=9 \mathrm{mgd}$
Downstream channel invert $=90$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=1457.39 \mathrm{ft} \wedge 2$
Hydraulic radius $=12.799$
Normal depth = infinite
Critical depth $=0.1 \mathrm{ft}$
Depth downstream $=19.43 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=19.43 \mathrm{ft}$
Velocity $=0.01 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

SC \#2 Influent Ports

109.57

Opening type = rectangular orifice
Opening diameter/width $=6$ in
Opening height $=30$ in
Invert $=106$
Number of openings $=6$
Flow through opening(s) $=9 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through opening $(\mathrm{s})=1.86 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Orifice loss $=0.14 \mathrm{ft}$
Downstream water level = 109.43
Upstream water level = 109.57

Pipe shape $=$ Circular
Diameter $=36$ in

Length $=200 \mathrm{ft}$
Flow $=9 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=2$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor $=1$
Solids factor = 1
Velocity $=1.97 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.08 \mathrm{ft}$
Fitting loss $=0.12 \mathrm{ft}$
Total loss $=0.2 \mathrm{ft}$
SC \#1 Drop box
109.78

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=3 \mathrm{ft}$
Channel width/diameter $=8 \mathrm{ft}$
Flow $=9$ mgd
Downstream channel invert $=100$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=78.24 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.839$
Normal depth = infinite
Critical depth $=0.46 \mathrm{ft}$
Depth downstream $=9.78 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=9.78 \mathrm{ft}$
Velocity $=0.18 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
SC Dist Box Weir \#5
110.71

Weir invert (top of weir) = 110
Weir length $=7 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=9 \mathrm{mgd}$
Weir submergence = unsubmerged
Head over weir $=0.71 \mathrm{ft}$
SC Distribution Box
110.71

Channel shape = Rectangular
Manning's ' n ' $=0.012$
Channel length $=9 \mathrm{ft}$
Channel width/diameter $=30 \mathrm{ft}$
Flow $=30 \mathrm{mgd}$

Downstream channel invert $=100$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=321.29 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.248$
Normal depth = infinite
Critical depth $=0.42 \mathrm{ft}$
Depth downstream $=10.71 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=10.71 \mathrm{ft}$
Velocity $=0.14 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 36-IN Effluent

111.01

Pipe shape $=$ Circular
Diameter $=36$ in
Length $=5 \mathrm{ft}$
Flow $=15 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.76$
Pipe area $=7.07 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.75$
Age factor = 1
Solids factor $=1$
Velocity $=3.28 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.01 \mathrm{ft}$
Fitting loss $=0.29 \mathrm{ft}$
Total loss $=0.3 \mathrm{ft}$
AB Exit Gate
111.48

Opening type = circular gate
Opening diameter/width $=36$ in
Gate height $=36$ in
Invert $=106$
Number of gates = 1
Flow through gate(s) = 15.01 mgd
Total area of opening $(\mathrm{s})=7.07 \mathrm{ft} \wedge 2$
Velocity through gate $(\mathrm{s})=3.29 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.47 \mathrm{ft}$
Downstream water level = 111.01
Upstream water level $=111.48$
AB 3 ML Drop Box
Channel shape $=$ Rectangular
Manning's 'n' = 0.012

Channel length $=3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow = 15.01 mgd
Downstream channel invert $=105.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=17.93 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.199$
Normal depth = infinite
Critical depth $=1.23 \mathrm{ft}$
Depth downstream $=5.98 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=5.98 \mathrm{ft}$
Velocity $=1.3 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
AB 3 ML Effluent Channel
111.49

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=5.5 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow = 15.01 mgd
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=6.69 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.897$
Normal depth = infinite
Critical depth $=1.23 \mathrm{ft}$
Depth downstream $=2.23 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=2.24 \mathrm{ft}$
Velocity $=3.47 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3 Effluent Sluice Gate

Opening type = rectangular gate
Opening diameter/width $=36$ in
Gate height $=30$ in
Invert = 109.25
Number of gates = 1
Flow through gate(s) $=15.01 \mathrm{mgd}$
Total area of opening(s) $=7.5 \mathrm{ft} \wedge 2$
Velocity through gate(s) $=3.1 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.39 \mathrm{ft}$
Downstream water level $=111.49$

Upstream water level $=111.87$

AB 3 Zone E

111.87

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow = 15.01 mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope = not applicable
Area of flow $=307.46 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.059$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=15.37 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=15.37 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall E to D

111.89

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir = 15 mgd
Weir submergence = fully submerged
Head over weir $=2.89 \mathrm{ft}$

Step Feed Gates AB No 3

111.9

Opening type = rectangular gate
Opening diameter/width $=24$ in
Gate height $=36$ in
Invert $=110.5$
Number of gates = 3
Flow through gate(s) $=10 \mathrm{mgd}$
Total area of opening(s) $=18 \mathrm{ft} \wedge 2$
Velocity through gate $(\mathrm{s})=0.86 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.03 \mathrm{ft}$
Downstream water level = 111.87
Upstream water level $=111.9$
Step Feed Channel AB No 3
112.03

Channel shape = Rectangular
Manning's 'n' = 0.013
Channel length $=108 \mathrm{ft}$

Channel width/diameter $=3 \mathrm{ft}$
Flow = 10 mgd
Downstream channel invert $=110$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=5.84 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.847$
Normal depth = infinite
Critical depth $=0.94 \mathrm{ft}$
Depth downstream $=1.9 \mathrm{ft}$
Bend loss $=0.05 \mathrm{ft}$
Depth upstream $=2.03 \mathrm{ft}$
Velocity $=2.71 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Step Feed Channel Bend
112.08

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow = 10 mgd
Downstream channel invert $=110$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=6.11 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.864$
Normal depth = infinite
Critical depth $=0.94 \mathrm{ft}$
Depth downstream $=2.03 \mathrm{ft}$
Bend loss $=0.04 \mathrm{ft}$
Depth upstream $=2.08 \mathrm{ft}$
Velocity $=2.54 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 3/4 Influent Pipe

112.19

Pipe shape $=$ Circular
Diameter $=42$ in
Length $=54 \mathrm{ft}$
Flow = 10 mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.7$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.61 \mathrm{ft} / \mathrm{s}$

Friction loss $=0.04 \mathrm{ft}$
Fitting loss $=0.07 \mathrm{ft}$
Total loss $=0.11 \mathrm{ft}$
42-IN Tee to AB 3/4
112.29

Tee type = run of tee
Diameter of pipe run past tee $=42$ in
Flow through tee $=20 \mathrm{mgd}$
Velocity through tee $=3.22 \mathrm{ft} / \mathrm{s}$
Total tee K value $=0.6$
Overall head loss $=0.1 \mathrm{ft}$

42-IN PC Effluent to PC Junction Box CS Mode

113.14

Pipe shape = Circular
Diameter $=42$ in
Length $=244 \mathrm{ft}$
Flow = 20 mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1$
Pipe area $=9.62 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=2.348$
Solids factor $=1$
Velocity $=3.22 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.7 \mathrm{ft}$
Fitting loss $=0.16 \mathrm{ft}$
Total loss $=0.86 \mathrm{ft}$
Prim. Eff. Junction Box (CS Mode)
113.14

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=15.5 \mathrm{ft}$
Channel width/diameter $=7 \mathrm{ft}$
Flow = 20 mgd
Downstream channel invert $=104.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=60.48 \mathrm{ft} \wedge 2$
Hydraulic radius $=2.491$
Normal depth $=$ infinite
Critical depth $=0.85 \mathrm{ft}$
Depth downstream $=8.64 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=8.64 \mathrm{ft}$
Velocity $=0.51 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

PC 2 24-IN Effluent CS Mode
113.28

Pipe shape = Circular
Diameter $=24$ in
Length $=15 \mathrm{ft}$
Flow $=4$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.7$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.97 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.03 \mathrm{ft}$
Fitting loss $=0.1 \mathrm{ft}$
Total loss $=0.14 \mathrm{ft}$
PC 2 Effluent Box CS Mode
113.28

Channel shape = Rectangular
Manning's ' n ' $=0.012$
Channel length $=1.5 \mathrm{ft}$
Channel width/diameter $=4 \mathrm{ft}$
Flow $=4$ mgd
Downstream channel invert $=104.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=35.12 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.629$
Normal depth = infinite
Critical depth $=0.42 \mathrm{ft}$
Depth downstream $=8.78 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=8.78 \mathrm{ft}$
Velocity $=0.18 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC 2 Effluent Launder CS Mode
113.39

Channel shape = Rectangular
Manning's 'n' = 0.012
Channel length $=71 \mathrm{ft}$
Channel width/diameter $=1 \mathrm{ft}$
Flow $=2 \mathrm{mgd}$
Downstream channel invert $=112$
Channel slope $=0.0015 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=1.28 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.36$

Normal depth $=1.28 \mathrm{ft}$
Critical depth $=0.67 \mathrm{ft}$
Depth downstream $=1.28 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=1.28 \mathrm{ft}$
Velocity $=2.41 \mathrm{ft} / \mathrm{s}$
Flow profile = Mild
PC 2 Effluent Weir CS Mode
114.42

Invert of V notch = 114.25
Angle of V notch $=90$ degrees
Number of notches $=212$
Total flow over weir $=4 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.17 \mathrm{ft}$

PC 2

114.42

Channel shape = Rectangular
Manning's 'n' = 0.012
Channel length $=45 \mathrm{ft}$
Channel width/diameter $=45 \mathrm{ft}$
Flow $=3.96 \mathrm{mgd}$
Downstream channel invert $=106$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=378.86 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.127$
Normal depth = infinite
Critical depth $=0.08 \mathrm{ft}$
Depth downstream $=8.42 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=8.42 \mathrm{ft}$
Velocity $=0.02 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

PC Influent Well

114.72

Pipe shape $=$ Circular
Diameter $=18$ in
Length $=7 \mathrm{ft}$
Flow $=4 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=1.25$
Pipe area $=1.77 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=2.348$
Solids factor $=1$
Velocity $=3.5 \mathrm{ft} / \mathrm{s}$

Friction loss $=0.06 \mathrm{ft}$
Fitting loss $=0.24 \mathrm{ft}$
Total loss $=0.3 \mathrm{ft}$
24-IN PC Influent
Pipe shape = Circular
Diameter $=24$ in
Length $=15 \mathrm{ft}$
Flow $=4$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=0.67$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.97 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.03 \mathrm{ft}$
Fitting loss $=0.04 \mathrm{ft}$
Total loss $=0.07 \mathrm{ft}$
36-IN PC Influent
114.87

Pipe shape = Circular
Diameter $=24$ in
Length $=15 \mathrm{ft}$
Flow $=4$ mgd
Friction method = Hazen Williams
Friction factor $=100$
Total fitting K value $=0.75$
Pipe area $=3.14 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.5$
Age factor $=2.348$
Solids factor $=1$
Velocity $=1.97 \mathrm{ft} / \mathrm{s}$
Friction loss $=0.03 \mathrm{ft}$
Fitting loss $=0.05 \mathrm{ft}$
Total loss $=0.08 \mathrm{ft}$

Drop Box to PC 2

114.87

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=3.5 \mathrm{ft}$
Channel width/diameter $=3.5 \mathrm{ft}$
Flow $=4 \mathrm{mgd}$
Downstream channel invert $=108$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable Area of flow $=24.05 \mathrm{ft} \wedge 2$

Hydraulic radius $=1.395$
Normal depth = infinite
Critical depth $=0.46 \mathrm{ft}$
Depth downstream $=6.87 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=6.87 \mathrm{ft}$
Velocity $=0.26 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
PC Distribution Box Weir to PC 2
117.66

Weir invert (top of weir) $=117$
Weir length $=3.5 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=4 \mathrm{mgd}$
Weir submergence $=$ unsubmerged
Head over weir $=0.66 \mathrm{ft}$
AB 3 Zone D
111.9

Channel shape = Rectangular
Manning's ' n ' $=0.012$
Channel length $=95 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=15.01$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=307.9 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.062$
Normal depth = infinite
Critical depth $=0.35 \mathrm{ft}$
Depth downstream $=15.39 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=15.4 \mathrm{ft}$
Velocity $=0.08 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Baffle Wall D to C

111.92

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=5 \mathrm{mgd}$
Weir submergence = fully submerged
Head over weir $=2.92 \mathrm{ft}$

AB 3 Zone C

111.92

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=130 \mathrm{ft}$

Channel width/diameter $=20 \mathrm{ft}$
Flow $=5.01$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=308.34 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.066$
Normal depth = infinite
Critical depth $=0.17 \mathrm{ft}$
Depth downstream $=15.42 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=15.42 \mathrm{ft}$
Velocity $=0.03 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal
Baffle Wall C to B
Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir = 5 mgd
Weir submergence = fully submerged
Head over weir $=2.94 \mathrm{ft}$

AB Zone B

111.94

Channel shape = Rectangular
Manning's 'n' = 0.013
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=5.01$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=308.78 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.069$
Normal depth = infinite
Critical depth $=0.17 \mathrm{ft}$
Depth downstream $=15.44 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=15.44 \mathrm{ft}$
Velocity $=0.03 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal

Baffle Wall A to B

111.96

Weir invert (top of weir) = 109
Weir length $=20 \mathrm{ft}$
Weir 'C' coefficient $=3.33$
Flow over weir $=5 \mathrm{mgd}$

Weir submergence = fully submerged
Head over weir $=2.96 \mathrm{ft}$

AB Zone A

111.96

Channel shape = Rectangular
Manning's 'n' = 0.013
Channel length $=30 \mathrm{ft}$
Channel width/diameter $=20 \mathrm{ft}$
Flow $=5.01$ mgd
Downstream channel invert $=96.5$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=309.22 \mathrm{ft} \wedge 2$
Hydraulic radius $=6.072$
Normal depth $=$ infinite
Critical depth $=0.17 \mathrm{ft}$
Depth downstream $=15.46 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=15.46 \mathrm{ft}$
Velocity $=0.03 \mathrm{ft} / \mathrm{s}$
Flow profile = Horizontal

AB 4 Influent Sluice Gate

111.97

Opening type = rectangular gate
Opening diameter/width = 36 in
Gate height $=30$ in
Invert $=110$
Number of gates = 2
Flow through gate $(\mathrm{s})=5.01 \mathrm{mgd}$
Total area of opening(s) $=15 \mathrm{ft} \wedge 2$
Velocity through gate $(\mathrm{s})=0.52 \mathrm{ft} / \mathrm{s}$
Flow behavior = orifice, downstream control
Gate loss $=0.01 \mathrm{ft}$
Downstream water level $=111.96$
Upstream water level $=111.97$
AB 4 Influent Channel
111.98

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=3 \mathrm{ft}$
Channel width/diameter $=3 \mathrm{ft}$
Flow $=5.01$ mgd
Downstream channel invert $=109.25$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=8.17 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.967$
Normal depth = infinite

Critical depth $=0.59 \mathrm{ft}$
Depth downstream $=2.72 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=2.73 \mathrm{ft}$
Velocity $=0.95 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

AB 4 Influent Slopped Channel

111.97

Channel shape $=$ Rectangular
Manning's 'n' = 0.012
Channel length $=5.3 \mathrm{ft}$
Channel width $/$ diameter $=3 \mathrm{ft}$
Flow $=15.01$ mgd
Downstream channel invert $=109.25$
Channel slope $=0.0141 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=8.06 \mathrm{ft} \wedge 2$
Hydraulic radius $=0.962$
Normal depth $=0.81 \mathrm{ft}$
Critical depth $=1.23 \mathrm{ft}$
Depth downstream $=2.73 \mathrm{ft}$
Bend loss $=0 \mathrm{ft}$
Depth upstream $=2.64 \mathrm{ft}$
Velocity $=2.84 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Steep

AB 4 Influent Split Box-Channel

112.02

Channel shape $=$ Rectangular
Manning's ' n ' $=0.012$
Channel length $=12 \mathrm{ft}$
Channel width/diameter $=4.5 \mathrm{ft}$
Flow = 15.01 mgd
Downstream channel invert $=110$
Channel slope $=0 \mathrm{ft} / \mathrm{ft}$
Channel side slope $=$ not applicable
Area of flow $=8.87 \mathrm{ft} \wedge 2$
Hydraulic radius $=1.051$
Normal depth = infinite
Critical depth $=0.94 \mathrm{ft}$
Depth downstream $=1.97 \mathrm{ft}$
Bend loss $=0.04 \mathrm{ft}$
Depth upstream $=2.02 \mathrm{ft}$
Velocity $=2.62 \mathrm{ft} / \mathrm{s}$
Flow profile $=$ Horizontal

Pipe shape $=$ Circular

Diameter $=10$ in
Length $=58 \mathrm{ft}$
Flow $=5 \mathrm{mgd}$
Friction method = Hazen Williams
Friction factor $=120$
Total fitting K value $=1.9$
Pipe area $=0.55 \mathrm{ft}^{2}$
Pipe hydraulic radius $=0.208$
Age factor $=1$
Solids factor $=1$
Velocity $=14.18 \mathrm{ft} / \mathrm{s}$
Friction loss $=4.17 \mathrm{ft}$
Fitting loss $=5.93 \mathrm{ft}$
Total loss $=10.1 \mathrm{ft}$

